By Topic

Robust adaptive beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cox, H. ; BBN Laboratories Incorporated, Arlington, VA ; Zeskind, R.M. ; Owen, M.M.

Adaptive beamforming algorithms can be extremely sensitive to slight errors in array characteristics. Errors which are uncorrelated from sensor to sensor pass through the beamformer like uncorrelated or spatially white noise. Hence, gain against white noise is a measure of robustness. A new algorithm is presented which includes a quadratic inequality constraint on the array gain against uncorrelated noise, while minimizing output power subject to multiple linear equality constraints. It is shown that a simple scaling of the projection of tentative weights, in the subspace orthogonal to the linear constraints, can be used to satisfy the quadratic inequality constraint. Moreover, this scaling is equivalent to a projection onto the quadratic constraint boundary so that the usual favorable properties of projection algorithms apply. This leads to a simple, effective, robust adaptive beamforming algorithm in which all constraints are satisfied exactly at each step and roundoff errors do not accumulate. The algorithm is then extended to the case of a more general quadratic constraint.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:35 ,  Issue: 10 )