By Topic

Exact maximum likelihood parameter estimation of superimposed exponential signals in noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bresler, Y. ; Stanford University, Stanford, CA, USA ; Macovski, A.

A unified framework for the exact maximum likelihood estimation of the parameters of superimposed exponential signals in noise, encompassing both the time series and the array problems, is presented. An exact expression for the ML criterion is derived in terms of the linear prediction polynomial of the signal, and an iterative algorithm for the maximization of this criterion is presented. The algorithm is equally applicable in the case of signal coherence in the array problem. Simulation shows the estimator to be capable of providing more accurate frequency estimates than currently existing techniques. The algorithm is similar to those independently derived by Kumaresan et al. In addition to its practical value, the present formulation is used to interpret previous methods such as Prony's, Pisarenko's, and modifications thereof.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:34 ,  Issue: 5 )