By Topic

Fast algorithms for the multidimensional discrete Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Guessoum ; Jackson State University, Jackson, MS ; R. Mersereau

In this paper, the prime factor algorithm for the evaluation of a one-dimensional discrete Fourier transform is generalized to the evaluation of multidimensional discrete Fourier transforms defined on arbitrary periodic sampling lattices. It is shown that such an algorithm is equivalent in computational complexity to the evaluation of a rectangular discrete Fourier transform. As a sidelight to the derivation of the algorithm, a Chinese remainder theorem is derived for integer lattices.

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:34 ,  Issue: 4 )