By Topic

Robust adapative Kalman filtering for systems with unknown step inputs and non-Gaussian measurement errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Kirlin ; University of Wyoming, Laramie WY ; A. Moghaddamjoo

Target tracking with Kalman filters is hampered by target maneuvering and unknown process and measurement noises. We show that moving data windows may be used to analyze state and measurement error sequences, determining robust estimates of bias and covariance. For steps in the system forcing functions and non-Gaussian measurement errors, the robust estimators yield improvements over linear bias and covariance estimators. Extensive simulations compare conventional, linear adaptive, and robust adaptive average step responses of a first-order system filter. Quantities examined are state estimate, state error, process and measurement covariance estimates, Kalman gain, and input step estimate.

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:34 ,  Issue: 2 )