Cart (Loading....) | Create Account
Close category search window
 

A new discrete Fourier transform algorithm using butterfly structure fast convolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nakayama, K. ; NEC Corporation, Kawasaki, Japan

This paper proposes a new approach to computing the discrete Fourier transform (DFT) with the power of 2 length using the butterfly structure number theoretic transform (NTT). An algorithm breaking down the DFT matrix into circular matrices with the power of 2 size is newly introduced. The fast circular convolution, which is implemented by the NTT based on the butterfly structure, can provide significant reductions in the number of computations, as well as a simple and regular structure, The proposed algorithm can be successively implemented following a simple flowchart using the reduced size submatrices. Multiplicative complexity is reduced to about 21 percent of that by the classical FFT algorithm, preserving almost the same number of additions.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:33 ,  Issue: 5 )

Date of Publication:

Oct 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.