By Topic

On the sliding-window representation in digital signal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bastiaans, M.J. ; Technische Hogeschool Eindhoven, Eindhoven, The Netherlands

The short-time Fourier transform of a discrete-time signal, which is the Fourier transform of a "windowed" version of the signal, is interpreted as a sliding-window spectrum. This sliding-window spectrum is a function of two variables: a discrete time index, which represents the position of the window, and a continuous frequency variable. It is shown that the signal can be reconstructed from the sampled sliding-window spectrum, i.e., from the values at the points of a certain time-frequency lattice. This sampling lattice is rectangular, and the rectangular cells occupy an area of 2π in the time-frequency domain. It is shown that an elegant way to represent the signal directly in terms of the sample values of the sliding-window spectrum, is in the form of Gabor's signal representation. Therefore, a reciprocal window is introduced, and it is shown how the window and the reciprocal window are related. Gabor's signal representation then expands the signal in terms of properly shifted and modulated versions of the reciprocal window, and the expansion coefficients are just the values of the sampled sliding-window spectrum.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:33 ,  Issue: 4 )