By Topic

Recursive maximum likelihood estimation of autoregressive processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kay, S.M. ; University of Rhode Island, Kingston, RI, USA

A new method of autoregressive parameter estimation is presented. The technique is a closer approximation to the true maximum likelihood estimator than that obtained using linear prediction techniques. The advantage of the new algorithm is mainly for short data records and/or sharply peaked spectra. Simulation results indicate that the parameter bias as well as the variance is reduced over the Yule-Walker and the forward-backward approaches of linear prediction. Also, spectral estimates exhibit more resolution and less spurious peaks. A stable all-pole filter estimate is guaranteed. The algorithm operates in a recursive model order fashion, which allows one to successively fit higher order models to the data.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:31 ,  Issue: 1 )