By Topic

VLSI Array processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

High speed signal processing depends critically on parallel processor technology. In most applications, general-purpose parallel computers cannot offer satisfactory real-time processing speed due to severe system overhead. Therefore, for real-time digital signal processing (DSP) systems, special-purpose array processors have become the only appealing alternative. In designing or using such array Processors, most signal processing algorithms share the critical attributes of regularity, recursiveness, and local communication. These properties are effectively exploited in innovative systolic and wavefront array processors. These arrays maximize the strength of very large scale integration (VLSI) in terms of intensive and pipelined computing, and yet circumvent its main limitation on communication. The application domain of such array processors covers a very broad range, including digital filtering, spectrum estimation, adaptive array processing, image/vision processing, and seismic and tomographic signal processing, This article provides a general overview of VLSI array processors and a unified treatment from algorithm, architecture, and application perspectives.

Published in:

IEEE ASSP Magazine  (Volume:2 ,  Issue: 3 )