By Topic

Cubic convolution interpolation for digital image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Keys, R. ; Cities Service Oil Company, Tulsa, OK

Cubic convolution interpolation is a new technique for resampling discrete data. It has a number of desirable features which make it useful for image processing. The technique can be performed efficiently on a digital computer. The cubic convolution interpolation function converges uniformly to the function being interpolated as the sampling increment approaches zero. With the appropriate boundary conditions and constraints on the interpolation kernel, it can be shown that the order of accuracy of the cubic convolution method is between that of linear interpolation and that of cubic splines. A one-dimensional interpolation function is derived in this paper. A separable extension of this algorithm to two dimensions is applied to image data.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:29 ,  Issue: 6 )