By Topic

Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Davis, S. ; Signal Technology, Inc., Santa Barbara, CA ; Mermelstein, P.

Several parametric representations of the acoustic signal were compared with regard to word recognition performance in a syllable-oriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on the ability to retain phonetically significant acoustic information in the face of syntactic and duration variations. For each parameter set (based on a mel-frequency cepstrum, a linear frequency cepstrum, a linear prediction cepstrum, a linear prediction spectrum, or a set of reflection coefficients), word templates were generated using an efficient dynamic warping method, and test data were time registered with the templates. A set of ten mel-frequency cepstrum coefficients computed every 6.4 ms resulted in the best performance, namely 96.5 percent and 95.0 percent recognition with each of two speakers. The superior performance of the mel-frequency cepstrum coefficients may be attributed to the fact that they better represent the perceptually relevant aspects of the short-term speech spectrum.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:28 ,  Issue: 4 )