By Topic

Recursive least squares smoothing of noise in images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Panda, D. ; Honeywell Systems and Research Center, Minneapolis, Minnesota ; Kak, A.C.

In the recent past considerable attention has been devoted to the application of Kalman filtering to smoothing out observation noise in image data. A generalization of the one-dimensional Kalman filter to two dimensions was earlier suggested by Habibi, but it has since been shown that this generalization is invalid since it does not preserve the optimality of the Kalman filter. A new method is proposed here that enables well-established Kalman-filter theory to yield a simple two-dimensional filter for images that can be modeled by two-dimensional wide-sense Markov (WSM) random fields.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:25 ,  Issue: 6 )