Cart (Loading....) | Create Account
Close category search window
 

On the use of autocorrelation analysis for pitch detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rabiner, L. ; Bell Laboratories, Murray Hill, NJ

One of the most time honored methods of detecting pitch is to use some type of autocorrelation analysis on speech which has been appropriately preprocessed. The goal of the speech preprocessing in most systems is to whiten, or spectrally flatten, the signal so as to eliminate the effects of the vocal tract spectrum on the detailed shape of the resulting autocorrelation function. The purpose of this paper is to present some results on several types of (nonlinear) preprocessing which can be used to effectively spectrally flatten the speech signal The types of nonlinearities which are considered are classified by a non-linear input-output quantizer characteristic. By appropriate adjustment of the quantizer threshold levels, both the ordinary (linear) autocorrelation analysis, and the center clipping-peak clipping autocorrelation of Dubnowski et al. [1] can be obtained. Results are presented to demonstrate the degree of spectrum flattening obtained using these methods. Each of the proposed methods was tested on several of the utterances used in a recent pitch detector comparison study by Rabiner et al. [2] Results of this comparison are included in this paper. One final topic which is discussed in this paper is an algorithm for adaptively choosing a frame size for an autocorrelation pitch analysis.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:25 ,  Issue: 1 )

Date of Publication:

Feb 1977

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.