By Topic

A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gray, A., Jr. ; University of California, Santa Barbara, Calif ; Markel, J.

The purpose of this paper is to introduce a spectral-flatness measure into the study of linear prediction analysis of speech. A spectral-flatness measure is introduced to give a quantitative measure of "whiteness," of a spectrum. It is shown that maximizing the spectral flatness of an inverse filter output or linear predictor error is equivalent to the autocorrelation method of linear prediction. Theoretical properties of the flatness measure are derived, and compared with experimental results. It is shown that possible ill-conditioning of the analysis problem is directly related to the spectral-flatness measure and that prewhitening by a simple first-order linear predictor to increase spectral flatness can greatly reduce the amount of ill-conditioning.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:22 ,  Issue: 3 )