By Topic

Linear programming design of IIR digital filters with arbitrary magnitude function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rabiner, L. ; Bell Laboratories, Murray Hill, New Jersey ; Graham, N. ; Helms, H.D.

This paper discusses the use of linear programming techniques for the design of infinite impulse response (IIR) digital filters. In particular, it is shown that, in theory, a weighted equiripple approximation to an arbitrary magnitude function can be obtained in a predictable number of applications of the simplex algorithm of linear programming. When one implements the design algorithm, certain practical difficulties (e.g., coefficient sensitivity) limit the range of filters which can be designed using this technique. However, a fairly large number of IIR filters have been successfully designed and several examples will be presented to illustrate the range of problems for which we found this technique to be useful.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:22 ,  Issue: 2 )