By Topic

Linear prediction, entropy and signal analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schroeder, Manfred R. ; University of Göttingen

This paper reviews the fundamental concepts of Linear Prediction (LP) and Maximum Entropy (ME) spectral analysis, and elucidates the reasons for their practical importance in the world of real signals. Subsequently, the paper introduces the powerful principle of Minimum Cross-Entropy (MCE) spectral analysis. MCE permits the incorporation of prior information into signal analysis. In a new approach to speech signal analysis, application of the MCE principle reduces the average number of predictor coefficients (poles) that have to be specified per time frame for a given spectral resolution by relying on prior spectral information. Such prior spectral information may be given by glottal source and lip radiation Characteristics, microphone and transmission frequency responses, and spectral information from preceding time frames-particularly during steady-state or slowly-varying portions of a speech utterance.

Published in:

ASSP Magazine, IEEE  (Volume:1 ,  Issue: 3 )