By Topic

The digital computation of discrete spectra using the fast Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Glisson, T.H. ; North Carolina State University, Raleigh, N.C ; Black, C. ; Sage, A.P.

This paper is devoted to a discussion of discrete spectrum analysis which is important in applicational areas such as sonar and replica correlation. The discrete Fourier transform is shown to arise naturally as a consequence of finite impulsive sampling and the fast Fourier transform is introduced as the most efficient means of computing the discrete Fourier transform. These are described in terms of parameters pertinent to digital sonar signal processing, including resolution, dynamic range, and processing gain. Computational accuracy is investigated as a function of word lengths associated with the data, kernels, and intermediate transforms for both conditional and automatic array scaling. In real-time equipment, it is frequently necessary to employ some sort of automatic gain control and such a device is investigated here. Results are presented which enable specification of word length and automatic gain control requirements as a function of desired dynamic range, input signal-to-noise ratio, and mean-square error at the quantizer output.

Published in:

Audio and Electroacoustics, IEEE Transactions on  (Volume:18 ,  Issue: 3 )