Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Use of an interactive laboratory computer to study an acoustic-oscillator model of the vocal cords

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Flanagan, J.L. ; Bell Telephone Laboratories Inc., Murray Hill, NJ, USA

A Honeywell DDP-516 computer is used with an interactive program to study an acoustic-oscillator model of the vocal cords. The program includes a simulated vocal tract. Iterative solutions are obtained to difference equations which describe the acoustic volume velocity through the cords and the sound pressure output at the mouth. The results can be printed, displayed on a scope, or D/A converted for auditory assessment. A fast Fourier transform provides spectral analysis of the synthesized signals. Parameters that the experimenter can specify from the console include, 1) subglottal pressure, 2) vocal cord tension, 3) vocal tract shape, 4) air density and 5) sound velocity. Results show that tract configuration, and hence acoustic load on the cords, substantially influences fundamental frequency of voicing. Fundamental frequency is also found to be a monotonic function of sub-glottal pressure and cord tension, other factors being constant. Increasing air density tends to reduce fundamental frequency, while changes in sound velocity affect it negligibly.

Published in:

Audio and Electroacoustics, IEEE Transactions on  (Volume:17 ,  Issue: 1 )