Cart (Loading....) | Create Account
Close category search window
 

Study of hydrogen diffusion in boron/germanium codoped optical fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swart, Pieter L. ; Centre for Opt. Commun. & Sensors, Rand Afrikaans Univ., Johannesburg, South Africa ; Chtcherbakov, Anatoli A.

Presents a novel technique for studying the dynamics of hydrogen diffusion in optical fiber. It shows that the hydrogen contributes directly to the effective refractive index of the fiber by its dielectric susceptibility. It provides a simple theory that relates the refractive index change to the total hydrogen concentration in the fiber core. It also deduces that there is a small contribution of less than 5% to the refractive index through the photoelastic effect. A low-finesse fiber Bragg grating Fabry-Perot interferometer allows the determination of the evolution of the hydrogen concentration in situ. The experimental results obtained for isothermal and isobaric diffusion between 45°C and 90°C yielded values for the parameters of Arrhenius-type expressions for the diffusivity, permeability, and solubility of hydrogen in germanium/boron codoped single-mode fiber. In addition, least squares curve-fits for outdiffusion yielded the gas-phase mass-transfer coefficient as a function of temperature.

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 11 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.