By Topic

Slot index spatial join

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikos Mamoulis ; Dept. of Comput. Sci. & Inf. Syst., Hong Kong Univ., China ; Papadias, D.

Efficient processing of spatial joins is very important due to their high cost and frequent application in spatial databases and other areas involving multidimensional data. This paper proposes slot index spatial join (SISJ), an algorithm that joins a nonindexed data set with one indexed by an R-tree. We explore two optimization techniques that reduce the space requirements and the computational cost of SISJ and we compare it, analytically and experimentally, with other spatial join methods for two cases: 1) when the nonindexed input is read from disk and 2) when it is an intermediate result of a preceding database operator in a complex query plan. The importance of buffer splitting between consecutive join operators is also demonstrated through a two-join case study and a method that estimates the optimal splitting is proposed. Our evaluation shows that SISJ outperforms alternative methods in most cases and is suitable for limited memory conditions.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 1 )