Cart (Loading....) | Create Account
Close category search window
 

Developing data allocation schemes by incremental mining of user moving patterns in a mobile computing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen-Chih Peng ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Ming-Syan Chen

In this paper, we present a new data mining algorithm which involves incremental mining for user moving patterns in a mobile computing environment and exploit the mining results to develop data allocation schemes so as to improve the overall performance of a mobile system. First, we propose an algorithm to capture the frequent user moving patterns from a set of log data in a mobile environment. The algorithm proposed is enhanced with the incremental mining capability and is able to discover new moving patterns efficiently without compromising the quality of results obtained. Then, in light of mining results of user moving patterns and the properties of data objects, we develop data allocation schemes that can utilize the knowledge of user moving patterns for proper allocation of both personal and shared data. By employing the data allocation schemes, the occurrences of costly remote accesses can be minimized and the performance of a mobile computing system is thus improved. For personal data allocation, two schemes are devised: one utilizes the set level of moving patterns and the other utilizes their path level. Schemes for shared data are also developed. Performance of these schemes is comparatively analyzed.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.