By Topic

Rough-fuzzy MLP: modular evolution, rule generation, and evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, S.K. ; Machine Intelligence Unit, Indian Stat. Inst., Calcutta, India ; Mitra, S. ; Mitra, P.

A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic algorithm to obtain a structured network suitable for both classification and rule extraction. The modular concept, based on "divide and conquer" strategy, provides accelerated training and a compact network suitable for generating a minimum number of rules with high certainty values. The concept of variable mutation operator is introduced for preserving the localized structure of the constituting knowledge-based subnetworks, while they are integrated and evolved. Rough set dependency rules are generated directly from the real valued attribute table containing fuzzy membership values. Two new indices viz., "certainty" and "confusion" in a decision are defined for evaluating quantitatively the quality of rules. The effectiveness of the model and the rule extraction algorithm is extensively demonstrated through experiments alongwith comparisons.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 1 )