By Topic

Image coding using vector quantization in the wavelet transform domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Antonini, M. ; CNRS, Sophia Antipolis Univ., Nice, France ; Barlaud, M. ; Mathieu, P. ; Daubechies, I.

A two-step scheme for image compression that takes into account psychovisual features in space and frequency domains is proposed. A wavelet transform is first used in order to obtain a set of orthonormal subclasses of images; the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains the number of pixels required to describe the image at a constant. Second, according to Shannon's rate-distortion theory, the wavelet coefficients are vector quantized using a multiresolution codebook. To encode the wavelet coefficients, a noise-shaping bit-allocation procedure which assumes that details at high resolution are less visible to the human eye is proposed. In order to allow the receiver to recognize a picture as quickly as possible at minimum cost, a progressive transmission scheme is presented. The wavelet transform is particularly well adapted to progressive transmission

Published in:

Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on

Date of Conference:

3-6 Apr 1990