By Topic

Sum versus vote fusion in multiple classifier systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Kittler ; Center for Vision, Speech, & Signal Process., Surrey Univ., Guildford, UK ; F. M. Alkoot

Amidst the conflicting experimental evidence of superiority of one over the other, we investigate the Sum and majority Vote combining rules in a two class case, under the assumption of experts being of equal strength and estimation errors conditionally independent and identically distributed. We show, analytically, that, for Gaussian estimation error distributions, Sum always outperforms Vote. For heavy tail distributions, we demonstrate by simulation that Vote may outperform Sum. Results on synthetic data confirm the theoretical predictions. Experiments on real data support the general findings, but also show the effect of the usual assumptions of conditional independence, identical error distributions, and common target outputs of the experts not being fully satisfied.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 1 )