By Topic

Representation and self-similarity of shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Geiger ; Courant Inst. of Math. Sci., New York, NY, USA ; Tyng-Luh Liu ; R. V. Kohn

Representing shapes in a compact and informative form is a significant problem for vision systems that must recognize or classify objects. We describe a compact representation model for two-dimensional (2D) shapes by investigating their self-similarities and constructing their shape axis trees (SA-trees). Our approach can be formulated as a variational one (or, equivalently, as MAP estimation of a Markov random field). We start with a 2D shape, its boundary contour, and two different parameterizations for the contour (one parameterization is oriented counterclockwise and the other clockwise). To measure its self-similarity, the two parameterizations are matched to derive the best set of one-to-one point-to-point correspondences along the contour. The cost functional used in the matching may vary and is determined by the adopted self-similarity criteria, e.g., cocircularity, distance variation, parallelism, and region homogeneity. The loci of middle points of the pairing contour points yield the shape axis and they can be grouped into a unique free tree structure, the SA-tree. By implicitly encoding the (local and global) shape information into an SA-tree, a variety of vision tasks, e.g., shape recognition, comparison, and retrieval, can be performed in a more robust and efficient way via various tree-based algorithms. A dynamic programming algorithm gives the optimal solution in O(N1), where N is the size of the contour.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 1 )