Cart (Loading....) | Create Account
Close category search window
 

Multilevel classification of milling tool wear with confidence estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fish, R.K. ; Eastern Nazarene Coll., Quincy, MA, USA ; Ostendorf, M. ; Bernard, G.D. ; Castanon, D.A.

An important problem during industrial machining operations is the detection and classification of tool wear. Past research in this area has demonstrated the effectiveness of various feature sets and binary classifiers. Here, the goal is to develop a classifier which makes use of the dynamic characteristics of tool wear in a metal milling application and which replaces the standard binary classification result with two outputs: a prediction of the wear level (quantized) and a gradient measure that is the posterior probability (or confidence) that the tool is worn given the observed feature sequence. The classifier tracks the dynamics of sensor data within a single cutting pass as well as the evolution of wear from sharp to dull. Different alternatives to parameter estimation with sparsely-labeled training data are proposed and evaluated. We achieve high accuracy across changing cutting conditions, even with a limited feature set drawn from a single sensor.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 1 )

Date of Publication:

2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.