By Topic

Analysis and correction of ultrasonic wavefront distortion based on a multilayer phase-screen model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deng-Huei Huang ; Graduate Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jenho Tsao

A model is introduced that incorporates the cumulative wavefront distortion effects caused by spatial heterogeneities along the path of propagation, and a corresponding model-based wavefront distortion-correction method is presented. In the proposed model, a distributed heterogeneous medium is lumped into a series of parallel phase screens. The distortion effects can be compensated-without a priori knowledge of the distorting structure-by backpropagation of received wavefronts through hypothetical multiple phase screens located between the imaging system and targets, while each pointwise time shift is adjusted iteratively to maximize a specified image quality factor at the final layer. Theoretical analyses indicate that the mean speckle brightness decreases monotonically with the root-mean-square value of distributed phase distortions; therefore, the speckle brightness can be used as an image quality factor. Experimental one-dimensional (1-D) array data with simulated distortion effects based on a real 2-D abdominal-tissue map were used to evaluate the performance of the proposed method and existing aberration-correction techniques. The simulated characteristics of wavefront distortion and relative performance of existing correction techniques were similar to reports based on abdominal-wall data and breast data. This investigation shows that the proposed method provides better compensation for wavefront distortion.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:49 ,  Issue: 12 )