By Topic

Finite-alphabet information and multivariate blind deconvolution and identification of linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ta-Hsin Li ; Dept. of Math. Sci., IBM T.J.Watson Res. Center, Yorktown Heights, NY, USA

This article addresses the problem of estimating a multivariate linear system from its output when the input is an unobservable sequence of random vectors with finite-alphabet distribution. By explicitly utilizing the finite-alphabet property, an estimation method is proposed under the traditional inverse filtering paradigm as a generalization of a univariate method that has been studied previously. Identifiability of multivariate systems by the proposed method is proved mathematically under very mild conditions that can be satisfied even if the input is nonstationary and has both cross-channel and serial statistical dependencies. Statistical super-efficiency in estimating both parametric and nonparametric systems is also established for an alphabet-based cost function.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 1 )