By Topic

Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Su, W. ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE, USA ; Xia, Xiang-Gen

Space-time block codes from orthogonal designs have two advantages, namely, fast maximum-likelihood (ML) decoding and full diversity. Rate 1 real (pulse amplitude modulation-PAM) space-time codes (real orthogonal designs) for multiple transmit antennas have been constructed from the real Hurwitz-Radon families, which also provides the rate 1/2 complex (quadrature amplitude modulation-QAM) space-time codes (complex orthogonal designs) for any number of transmit antennas. Rate 3/4 complex orthogonal designs (space-time codes) for three and four transmit antennas have existed in the literature but no high rate (>1/2) complex orthogonal designs for other numbers of transmit antennas exist. We present rate 7/11 and rate 3/5 generalized complex orthogonal designs for five and six transmit antennas, respectively.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 1 )