By Topic

Asymptotic analysis of superorthogonal turbo codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. Wintzell ; Dept. of Inf. Technol., Lund Univ., Sweden ; M. Lentmaier ; K. Sh. Zigangirov

We examine a low-rate turbo coding scheme based on superorthogonal convolutional encoders (SOCEs). The low-rate coding is suitable for code-division multiple-access (CDMA) applications. We use the property that the component encoders are equivalent to conventional convolutional encoders to analyze the asymptotic performance. We analyze the iterative decoding performance that can be achieved when both the code length and the number of iterations tend to infinity and present a bound on the iterative limit of the code construction. It is shown by asymptotic analysis, that the rate 1/7,1/15, and 1/31 codes with component encoders of memory 3,4, and 5 have iterative limits below -0.65, -0.88, and -0.95 dB, respectively. Simulations for codes with large permutors (interleavers) confirm these asymptotic results. The construction is general and can be done for codes of lower rates as well.

Published in:

IEEE Transactions on Information Theory  (Volume:49 ,  Issue: 1 )