Cart (Loading....) | Create Account
Close category search window
 

On the convergence of the inverses of Toeplitz matrices and its applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feng-Wen Sun ; Hughes Network Syst. Inc., Germantown, MD, USA ; Yimin Jiang ; Baras, J.S.

Many issues in signal processing involve the inverses of Toeplitz matrices. One widely used technique is to replace Toeplitz matrices with their associated circulant matrices, based on the well-known fact that Toeplitz matrices asymptotically converge to their associated circulant matrices in the weak sense. This often leads to considerable simplification. However, it is well known that such a weak convergence cannot be strengthened into strong convergence. It is this fact that severely limits the usefulness of the close relation between Toeplitz matrices and circulant matrices. Observing that communication receiver design often needs to seek optimality in regard to a data sequence transmitted within finite duration, we define the finite-term strong convergence regarding two families of matrices. We present a condition under which the inverses of a Toeplitz matrix converges in the strong sense to a circulant matrix for finite-term quadratic forms. This builds a critical link in the application of the convergence theorems for the inverses of Toeplitz matrices since the weak convergence generally finds its usefulness in issues associated with minimum mean squared error and the finite-term strong convergence is useful in issues associated with the maximum-likelihood or maximum a posteriori principles.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.