By Topic

On the design of algebraic space-time codes for MIMO block-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
El Gamal, H. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Hammons, A.R.Jr.

The availability of multiple transmit antennas allows for two-dimensional channel codes that exploit the spatial transmit diversity. These codes were referred to as space-time codes by Tarokh et al. (see ibid., vol.44, p.744-765, Mar. 1998) Most prior works on space-time code design have considered quasi-static fading channels. We extend our earlier work on algebraic space-time coding to block-fading channels. First, we present baseband design criteria for space-time codes in multi-input multi-output (MIMO) block-fading channels that encompass as special cases the quasi-static and fast fading design rules. The diversity advantage baseband criterion is then translated into binary rank criteria for phase shift keying (PSK) modulated codes. Based on these binary criteria, we construct algebraic space-time codes that exploit the spatial and temporal diversity available in MIMO block-fading channels. We also introduce the notion of universal space-time codes as a generalization of the smart-greedy design rule. As a part of this work, we establish another result that is important in its own right: we generalize the full diversity space-time code constructions for quasi-static channels to allow for higher rate codes at the expense of minimal reductions in the diversity advantage. Finally, we present simulation results that demonstrate the excellent performance of the proposed codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 1 )