By Topic

Path partitions and forward-only trellis algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao Ma ; Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; A. Kavcic

This is a semitutorial paper on trellis-based algorithms. We argue that most decoding/detection algorithms described on trellises can be formulated as path-partitioning algorithms, with proper definitions of mappings from subsets of paths to metrics of subsets. Thereby, the only two operations needed are path-concatenation and path-collection, which play the roles of multiplication and addition, respectively. Furthermore, we show that the trellis structure permits the path-partitioning algorithms to be formulated as forward-only algorithms (with structures resembling the Viterbi (1967) algorithm), thus eliminating the need for backward computations regardless of what task needs to be performed on the trellis. While all of the actual decoding/detection algorithms presented here are rederivations of variations of previously known methods, we believe that the exposition of the algorithms in a unified manner as forward-only path-partitioning algorithms is the most intuitive manner in which to generalize the Viterbi algorithm. We also believe that this approach may, in fact, influence the practical implementation of the algorithms as well as influence the construction of other forward-only algorithms (e.g., byte-wise forward-only detection algorithms).

Published in:

IEEE Transactions on Information Theory  (Volume:49 ,  Issue: 1 )