By Topic

Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lung-Hwa Hsieh ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Kai Chang

A compact elliptic-function low-pass filter using microstrip stepped-impendance hairpin resonators and their equivalent-circuit models are developed. The prototype filters are synthesized from the equivalent-circuit model using available element-value tables. To optimize the performance of the filters, electromagnetic simulation is used to tune the dimensions of the prototype filters. The filter using multiple cascaded hairpin resonators provides a very sharp cutoff frequency response with low insertion loss. Furthermore, to increase the rejection-band bandwidth, additional attenuation poles are added in the filter. The filters are evaluated by experiment and simulation with good agreement. This simple equivalent-circuit model provides a useful method to design and understand this type of filters and other relative circuits.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 1 )