By Topic

Design and characterization of an all-cryogenic low phase-noise sapphire K-band oscillator for satellite communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vitusevich, S.A. ; Forschungszentrum Julich, Inst. fur Schichten und Grenzlachen, Julich, Germany ; Schieber, K. ; Ghosh, I.S. ; Klein, N.
more authors

An all-cryogenic oscillator consisting of a frequency-tunable sapphire resonator, a high-temperature superconducting filter and a pseudomorphic high electron-mobility transistor amplifier was designed for the K-band frequency range. The high quality factor of the resonator above 1 000 000 and the low amplifier phase noise of approximately -133 dBc/Hz at a frequency offset of 1 kHz from the carrier, gave oscillator phase-noise values superior to quartz-stabilized oscillators at the same carrier frequency for offset frequencies higher than 100 Hz. In addition to low phase noise, the oscillator possesses mechanical and electrical frequency tunability. We have implemented a two-step electrical tuning arrangement consisting of a varactor phase shifter integrated within the amplifier circuit (fine tuning by 5 kHz) and a dielectric plunger moved by a piezomechanical transducer inside the resonator housing (coarse tuning by 50 kHz). This tuning range is sufficient for phase locking and for electronic compensation of temperature drifts occurring during operation of the device employing a miniaturized closed-cycle Stirling-type cryocooler.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 1 )