By Topic

Modeling dispersion and radiation characteristics of conductor-backed CPW with finite ground width

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schnieder, F. ; Ferdinand-Braun-Inst. fur Hochfrequenztechnik, Berlin, Germany ; Tischler, T. ; Heinrich, W.

Dispersion and radiation properties of the conductor-backed coplanar waveguide (CPW) with finite ground planes are analyzed and modeled. A frequency-domain finite-difference method using the perfectly matched layer absorbing boundary condition is used as reference. Based on these results, a closed-form description is derived and implemented into an existing quasi-static CPW model. This leads to a comprehensive and efficient CPW description accounting for all relevant effects from conductor loss to high-frequency dispersion. Additionally, design rules to avoid parasitic radiation effects are given.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 1 )