By Topic

Language-based information-flow security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sabelfeld, A. ; Comput. Sci. Dept., Cornell Univ., Ithaca, NY, USA ; Myers, A.C.

Current standard security practices do not provide substantial assurance that the end-to-end behavior of a computing system satisfies important security policies such as confidentiality. An end-to-end confidentiality policy might assert that secret input data cannot be inferred by an attacker through the attacker's observations of system output; this policy regulates information flow. Conventional security mechanisms such as access control and encryption do not directly address the enforcement of information-flow policies. Previously, a promising new approach has been developed: the use of programming-language techniques for specifying and enforcing information-flow policies. In this paper, we survey the past three decades of research on information-flow security, particularly focusing on work that uses static program analysis to enforce information-flow policies. We give a structured view of work in the area and identify some important open challenges.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 1 )