Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Connecting and disconnecting for chain self-reconfiguration with PolyBot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yim, M. ; Palo Alto Res. Center, CA, USA ; Ying Zhang ; Roufas, K. ; Duff, D.
more authors

Chain modular robots form systems with many degrees of freedom which are capable of being reconfigured to form arbitrary chain-based topologies. This reconfiguration requires the detaching of modules from one point in the system and reattaching at another. The internal errors in the system (especially with large numbers of modules) are such that accurate movement of chain ends, required for the attaching of modules, can be extremely difficult. A three-phase docking process is described that utilizes both open- and closed-loop techniques. This process has been shown to work with an early version. Issues raised during this testing have been addressed in a later version. Discussion of these issues, their solutions, and preliminary results of the testing the latest version are given.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:7 ,  Issue: 4 )