By Topic

Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Butler, Z. ; Dept. of Comput. Sci., Dartmouth Coll., Hanover, NH, USA ; Fitch, R. ; Rus, D.

We present a distributed self-reconfiguring robot system with unit-compressible modules called the Crystal robot. A new design for the Crystal is presented that decouples the x axis and y axis actuation, has on-board sensing and has neighbor-to-neighbor communication. We also describe a suite of distributed control algorithms for this type of robot and associated experiments for each algorithm. Several of the algorithms presented are instantiations of generic distributed algorithms for self-reconfiguring robots. Specifically, we present an algorithm for distributed goal recognition, two new distributed locomotion algorithms designed for unit-compressible actuation and a new generic-division algorithm. We also present the integration of a locomotion algorithm with distributed goal recognition, allowing the robot to reconfigure and recognize the achievement of its goal, all without the use of a central controller. For all of these algorithms, we describe the implementation, sketch correctness analysis and present experimental data. Our experiments empirically verify the usefulness of our distributed algorithms on a self-reconfiguring system.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:7 ,  Issue: 4 )