Cart (Loading....) | Create Account
Close category search window
 

Using role-based control to produce locomotion in chain-type self-reconfigurable robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stoy, K. ; Adaptronics Group, Univ. of Southern Denmark, Odense, Denmark ; Wei-Min Shen ; Will, P.M.

This paper presents a role-based approach to the problem of controlling locomotion of chain-type self-reconfigurable robots. In role-based control, all modules are controlled by identical controllers. Each controller consists of several playable roles and a role-selection mechanism. A role represents the motion of a module and how it synchronizes with connected modules. A controller selects which role to play depending on the local configuration of the module and the roles being played by connected modules. We use role-based control to implement a sidewinder and a caterpillar gait in the CONRO self-reconfigurable robot. The robot is made from up to nine modules connected in a chain. We show that the locomotion speed of the caterpillar gait is constant even with loss of 75% of the communication signals. Furthermore, we show that the speed of the caterpillar gait decreases gracefully with a decreased number of modules. We also implement a quadruped gait and show that without changing the controller the robot can be extended with an extra pair of legs and produce a hexapod gait. Based on these experiments, we conclude that role-based control is robust to signal loss, scales with an increased number of modules, and is a simple approach to the control of locomotion of chain-type self-reconfigurable robots.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Dec. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.