By Topic

Fabrication and optical characterization of template-constructed thin films with chiral nanostructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harris, K.D. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Canada ; Sit, Jeremy C. ; Brett, Michael J.

We report the fabrication of thin films perforated by high aspect ratio helical or chevron pores by an extension of the glancing angle deposition (GLAD) technique. The perforated films were created by transferring the nanostructure of a GLAD template film into target materials such as polymers and spin-on-glasses and subsequently removing the template. The pore shapes are shown to be highly controllable and films designed to suit particular applications are discussed. By a double templating technique, we replicate the structure of the original film using alternate materials, which are typically less suited to the unmodified GLAD technique. Helical films of Cu and Ni were created by this method and the process should be transferable to additional electrodeposited materials. The optical rotatory power of perforated thin films formed on glass substrates was characterized and perforated films were shown to be effective in rotating the polarization plane of linearly polarized incident light by as much as 1.4°/μm.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:1 ,  Issue: 3 )