Cart (Loading....) | Create Account
Close category search window
 

Arc motion and gas flow in current limiting circuit breakers operating with a low contact switching velocity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
McBride, J.W. ; Electro-Mech. Res. Group, Univ. of Southampton, UK ; Pechrach, K. ; Weaver, P.M.

Arc motion in low voltage (240 VAC) high current (103-104A.) current limiting-circuit breakers is dominated by arc root mobility. The mobility is influenced by the gas flow and gas composition in the contact region, but there is little experimental data on these effects. New pressure and spectral data measurement during arc movement are presented using a flexible test apparatus and an arc imaging system. These measurements are used to investigate gas flow characteristics in the arc chamber. The chemical and physical phenomena occurring during the arc motion are discussed. The combination of optical and spectral data provides new insight into the arc motion. The influences of arc chamber material, contact material, and contact opening speed, are investigated to improve arc control for a low contact opening velocity.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:25 ,  Issue: 3 )

Date of Publication:

Sep 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.