By Topic

A resampling approach to estimate the stability of one-dimensional or multidimensional independent components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meinecke, F. ; Dept. of Phys., Univ. of Potsdam, Germany ; Ziehe, A. ; Kawanabe, M. ; Muller, K.

When applying unsupervised learning techniques in biomedical data analysis, a key question is whether the estimated parameters of the studied system are reliable. In other words, can we assess the quality of the result produced by our learning technique? We propose resampling methods to tackle this question and illustrate their usefulness for blind-source separation (BSS). We demonstrate that our proposed reliability estimation can be used to discover stable one-dimensional or multidimensional independent components, to choose the appropriate BSS-model, to enhance significantly the separation performance, and, most importantly, to flag components that carry physical meaning. Application to different biomedical testbed data sets (magnetoencephalography (MEG)/electrocardiography (ECG)-recordings) underline the usefulness of our approach.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 12 )