Cart (Loading....) | Create Account
Close category search window
 

Self-consistent scattering model of carrier dynamics in GaAs-AlGaAs terahertz quantum-cascade lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Indjin, D. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, UK ; Harrison, P. ; Kelsall, R.W. ; Ikonic, Z.

Intersubband electron scattering transport in terahertz GaAs-AlGaAs quantum cascade lasers is analyzed, using a full 13-level self-consistent rate equation model. The approach includes all relevant scattering mechanisms between injector-collector and active region states in the cascade structures. Employing an energy balance equation which includes the influence of both electron longitudinal optical phonon and electron-electron scattering, the method also enables evaluation of the average electron temperature of the nonequilibrium carrier distributions in the device. The electron temperature is found to give a strong influence on the output characteristics, particularly at very low temperatures. The threshold currents and electric field-current density characteristics are in very good agreement with experiment, implying that the model has a strong predictive capability.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 1 )

Date of Publication:

Jan. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.