By Topic

Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mery, D. ; Dept. de Ingenieria Informatica, Univ. de Santiago de Chile, Chile ; Filbert, D.

Presents a method for inspecting aluminum castings automatically from a sequence of radioscopic images taken at different positions of the casting. The classic image-processing methods for flaw detection of aluminum castings use a bank of filters to generate an error-free reference image. This reference image is compared with the real radioscopic image, and flaws are detected at the pixels where the difference between them is considerable. However, the configuration of each filter depends strongly on the size and shape of the structure of the casting under inspection. A two-step technique is proposed to detect flaws automatically and that uses a single filter. First, the method identifies potential defects in each image of the sequence, and second, it matches and tracks them from image to image. The key idea of the paper is to consider as false alarms those potential defects which cannot be tracked in the sequence. The robustness and reliability of the method have been verified on both real data in which synthetic flaws have been added and real radioscopic image sequences recorded from cast aluminum wheels with known defects. Using this method, the real defects can be detected with high certainty. This approach achieves good discrimination from false alarms.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:18 ,  Issue: 6 )