By Topic

A new current model flux observer for wide speed range sensorless control of an induction machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rehman, H. ; Dept. of Electr. Eng., United Arab Emirates Univ., Al-Ain, United Arab Emirates ; Derdiyok, A. ; Guven, M.K. ; Longya Xu

A new closed loop current model flux observer is designed to estimate the rotor flux, position and velocity of an induction machine. The current observer includes carefully designed sliding mode functions which are derivative of the fluxes along the /spl alpha/ and /spl beta/ axes. Therefore, when the estimated current converges to the measured one, the flux estimation is a mere integration of the sliding mode function. The rotor speed can then be derived from the sliding mode functions and the estimated flux. In the current and flux observers all of the terms that contain the rotor time constant and the rotor speed have been replaced by the sliding mode functions, thus making the proposed current and flux estimations completely insensitive to the rotor time constant variation and any error in the estimated speed. Simulations and experiments are performed under a variety of conditions to validate the effectiveness of the proposed algorithm.

Published in:

Power Electronics, IEEE Transactions on  (Volume:17 ,  Issue: 6 )