Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A novel self-optimizing approach for knowledge acquisition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dan Pan ; South China Univ. of Technol., Guangzhou, China ; Qi-lun Zheng ; An Zeng ; Jin-Song Hu

The attribute reduction and rule generation (the attribute value reduction) are two main processes for knowledge acquisition. A self-optimizing approach based on a difference comparison table for knowledge acquisition aimed at the above processes was proposed. In the attribute reduction process, the conventional logic computation was transferred to a matrix computation along with some added thoughts on the evolution computation used to construct the self-adaptive optimizing algorithm. In addition, some sub-algorithms and proofs were presented in detail. In the rule generation process, the orderly attribute value reduction algorithm (OAVRA), which simplified the complexity of rule knowledge, was presented. The approach provided an effective and efficient method for knowledge acquisition that was supported by the experimentation.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:32 ,  Issue: 4 )