Cart (Loading....) | Create Account
Close category search window
 

Wetting characteristics of Pb-free solder alloys and PWB finishes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sattiraju, S.V. ; NSF Center for Adv. Vehicle Electron., Auburn Univ., AL, USA ; Dang, B. ; Johnson, R.W. ; Yali Li
more authors

For a successful transition to Pb-free manufacturing in electronics assembly, it is critical to understand the behavior of Pb-free solders (in bulk and paste form) and their interaction with the Pb-free printed wiring board (PWB) finishes. This paper presents the results obtained from solder paste spread tests and wetting balance experiments with several Pb-free solder alloys and Pb-free PWB finishes. The solder alloys studied were Sn3.4Ag4.8Bi, Sn4.0Ag0.5Cu, Sn3.5Ag and Sn0.7Cu. Eutectic Sn37Pb was used as a reference. The PWB surface finishes were Sn, NiAu, Ag and OSP. Wetting balance experiments were conducted in air while the spread tests were performed in air and nitrogen to understand the effect of reflow atmosphere on the spreading. Surface analysis techniques such as Nomarski phase contrast microscopy, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-received PWB finishes. Sequential electrochemical reduction analysis (SERA) was also performed on the as-received PWB test coupons and on the Sn test coupons after multiple reflow cycles. The effect of multiple reflow cycles on the wetting performance, spreading and the surface composition of the PWB finishes was studied.

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:25 ,  Issue: 3 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.