Cart (Loading....) | Create Account
Close category search window

Features of vectorial modes in phase-coupled VCSEL arrays: experiments and theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a detailed study of oxide-confined, vertical-cavity surface-emitting lasers (VCSELs) where the reflectivity of the top mirror has been patterned by means of a metal grid, which at the same time acts also as an electrode. Owing to their features, these kind of devices are commonly referred to as phase-coupled VCSEL arrays. The analysis is based on a joint experimental and theoretical effort: the former is devoted to a complete characterization of the emission properties, while the latter is based on a comprehensive fully vectorial model for the structure eigenmodes with the details of their complex structure. The detected characteristics make them quite attractive for various applications and the comparison of their modal properties with the model is proved to be essential for a deep understanding of these lasers. In particular, we observed and explain, for the first time, a characteristic behavior of the lasing array, which displays spatially inhomogeneous polarization characteristics with symmetry properties with respect to the array diagonals. The good matching between theory and experiment opens new perspectives for an optimized device, where the typical four lobe far-field emission is converted in a narrow central lobe: two different proposals will be discussed.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.