By Topic

A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xu Wang ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, China ; Chan, Kam Tai

Multiwavelength optical pulse trains with variable two-dimensional (2-D) code patterns formed by a single encoder have been generated from a self-seeded gain-switched Fabry-Perot (F-P) laser for the first time. Mechanically tunable cascaded fiber Bragg gratings (FBG) are used to construct the reconfigurable encoder, which acts as a discrete nonlinear dispersive component in the subharmonically pulse-gated external cavity of the laser to generate multiwavelength pulse trains with a variable 2-D code pattern defined by the settings of the FBG string. Four distinct repetitive patterns (corresponding to four different 2-D codes) of optical pulse trains, each made up of up to four pulses generated sequentially with different wavelengths, have been produced at a repetition rate of 250 MHz. The output pulses obtained by this method are much more intense and stable than those obtained from a free-running F-P laser. Furthermore, the different pulse patterns obtained show that the scheme can allow easy switching among different 2-D codes by simply reconfiguring the FBG string. Hence this laser with the embedded reconfigurable encoder should be a viable optical source for incoherent 2-D fiber-optic code-division multiple access (FO-CDMA) applications. Near-error-free transmission of data at 250 Mbit/s employing this laser/encoder over 9.5 km standard single mode fiber has been successfully demonstrated, thus confirming its performance and viability for FO-CDMA.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 1 )