By Topic

Electrical characterization of carbon monoxide sensitive high temperature sensor diode based on catalytic metal gate-insulator-silicon carbide structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nakagomi, Shinji ; Sch. of Sci. & Eng., Ishinomaki Senshu Univ., Japan ; Spetz, A.L. ; Lundstrom, Ingemar ; Tobias, P.

Field-effect gas sensors based on catalytic metal-insulator-silicon carbide (MISiC) devices are investigated. For the evaluation of the barrier height, the temperature dependence of the current-voltage (I-V) and the capacitance-voltage (C-V) characteristics of MISiC Schottky diodes were investigated in CO and O2 atmospheres. Four methods were used to evaluate how a change in gas ambient influences the barrier height of the diode: a change of the intersection current at zero voltage in the forward direction of the I-V curve, a change of the temperature dependence in the forward direction and the reverse direction, respectively, of the I-V curve, and a change of the intersection voltage of 1/C2 versus V plot. The four methods gave similar changes in the barrier height for the device in 8000 ppm CO and 4000 ppm O2. The values of barrier height obtained from the I-V curves were here normalized by the ideality factor calculated from I-V measurements. The correlation between the barrier height change obtained from the I-V and the C-V measurements, respectively, is discussed regarding the ideality factor.

Published in:

Sensors Journal, IEEE  (Volume:2 ,  Issue: 5 )